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For evaluation of the adverse health effects associated with
exposures to complex chemical mixtures in the environment, the
U.S. Environmental Protection Agency (EPA) (2000) states, “if no
data are available on the mixture of concern, but health effects
data are available on a similar mixture . . . a decision must be
made whether the mixture on which health effects are available is
‘sufficiently’ similar to the mixture of concern to permit a risk
assessment.” This article provides a detailed discussion of statistical
considerations for evaluation of the similarity of mixtures. Multi-
variate statistical procedures are suggested to determine whether
individual samples of drinking-water disinfection by-products
(DBPs) vary significantly from a group of samples that are considered
to be similar. The application of principal components analysis to
(1) reduce the dimensionality of the vectors of water samples and
(2) permit visualization and statistical comparisons in lower dimen-
sional space is suggested. Formal analysis of variance tests of
homogeneity are illustrated. These multivariate statistical proce-
dures are applied to a data set describing samples from multiple
water treatment plants. Essential data required for carrying out
sensitive analyses include (1) identification and measurement of
toxicologically sensitive process input and output characteristics,
and (2) estimates of variability within the data to construct statis-
tically efficient estimates and tests.

Many contaminants occur in the environment as complex
mixtures, which are generally comprised of many, perhaps
hundreds of, chemical components. The proportions of these
components vary depending on how the mixture was formed
and the fate of the mixture in the environment. Furthermore, a
portion of the complex mixture may be poorly characterized
chemically, with some components unknown.

The U.S. EPA has developed guidance that discusses con-
cepts and suggested procedures for the health risk assessment
of exposures to multiple chemicals, including complex mix-
tures (U.S. EPA, 1986, 2000). Ideally, environmental health
risk assessments are conducted using dose-response data
developed from the mixture of concern. However when dose-
response data are not available for the chemical mixture to
which individuals are exposed (i.e., the mixture of concern),
U.S. EPA (2000) recommends the use of dose-response data
from a similar mixture (i.e., the tested mixture). Conse-
quently, the determination of whether the mixture of concern
is “sufficiently similar” to a tested mixture or a group of
tested mixtures becomes central to the use of whole mixture
methods. The U.S. EPA guidance states that differences in
components or the components proportions be considered in
analyses of similarity and that the determination of “suffi-
cient similarity” needs to consider the uncertainties associ-
ated with using data on the tested mixture as a surrogate for
another environmental mixture. The guidance does not,
however, provide specific direction on methods with which to
approach such a problem.

The chemical disinfection of drinking water results in
the formation of complex mixtures comprised of a large and
complex array of by-products. Bull et al. (2001, 2008a, 2008b)
discuss in detail the various classes of disinfection by-products
(DBP) that occur in drinking water and are associated with
various adverse health consequences. They characterize input
factors to the water treatment process that affect the formation
of by-products, the variation in the output DBP associated
with these factors, and some of the toxicological implications
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MULTIVARIATE EVALUATION OF DBP MIXTURE SIMILARITY 469

of this variation. Bull et al. (2001, 2009a, 2009b) note that the
composition of DBP mixtures in finished drinking water is a
complex function of source water characteristics, treatment
process characteristics, and modifications to physical and
chemical characteristics of the finished water that occur during
the distribution of the water to houses and industry (e.g.,
changes in pH or temperature, additional water treatment using
chemical substances). This complex mixture varies across
treatment plants located in different places, over time within
the same treatment plant, and in the treated waters as they
travel through the distribution system.

Rice et al. (2009) present an overview of proposed meth-
ods for assessing similarity of complex mixtures. Rice et al.
(2009) discuss methods based on whole mixtures and meth-
ods based on individual mixture component data. They state
that if whole-mixtures data are available then whole-mixtures
methods are preferred because they are subject to less uncer-
tainty. The statistical methods discussed in this article are
based on whole-mixtures data.

The focus of this article is to (1) present and illustrate multivari-
ate statistical analysis and graphical methods that assess the degree
of similarity of multiple input water sources to treatment plants,
using data from Schenck et al. (2009), and (2) assess the similarity
of the finished water and the distribution system water emanating
from those five treatment plants. The source water category and
the chlorine dose used at each plant are provided in Table 1.

The statistical methods are illustrated based on selected
characteristics of the input and output water that were consid-
ered to be most important in affecting the degree of similarity
(Table 2). These data describe the water source, the treatment
characteristics, and the finished water and distribution water
characteristics. Many of these characteristics are “summary
variables,” which describe the whole mixture, rather than single
chemicals within the mixture. Examples of such variables that

describe the DBP mixture include total organic halogens (TOX),
mutagenic activity, total trihalomethanes (TTHM), haloacetic
acids (HHA), and percent TTHM and HHA that consists of
brominated compounds. Use of summary variables is essential
to evaluating similarity among mixtures because they account for

TABLE 1 
The Five Treatment Plants and the Month, Year During Which 

They Were Monitored, the Water Sources, and the Chlorine 
Treatment Characteristics

Treatment 
plant # Date Water source Chlorine dose(s)

1 September, 
1995

Ground water 2.12 mg/L

2 March, 
1996

Surface water 
Creek

4.1 mg/L

3 June, 1996 Surface water 
River

4.9 and 0.4 mg/L

4 September, 
1997

Surface water 
Two lakes

1.92 and 1.98 mg/L

5 September, 
1998

Surface water 
Pond

1.98 mg/L

TABLE 2 
Input and Output Factors Affecting the Chlorination 

By-products in Drinking Water

Process Characteristics

Source Water 
(Input)

• Surface water vs. ground water
• Total Organic Carbon (TOC)
• UV absorbance
• Bromide level

Treatment Plant 
(Input)

• Form of chlorine input—Gas 
vs. liquid (hypochlorite 
solution)

• Chlorine concentration (mg/L 
source water) added during 
chlorination step(s)

• NH3 added to treated water at 
or following chlorination step 
(chloramination)

• pH of water at chlorination step
• Temperature of water at 

chlorination step and beyond

Finished and 
distribution 
Water 
(Output).

• TOC (alternatively UV)
• Total organic halogen (TOX)
• Total trihalomethanes (THM)

• Percent brominated
• Percent mixed (brominated-

chlorinated)
• Percent chlorinated;

• Six haloacetic acids (HAA6)
• Percent brominated
• Percent mixed (brominated-

chlorinated)
• Percent chlorinated

• Total haloacetonitriles
• Percent brominated
• Percent mixed (brominated-

chlorinated)
• Percent chlorinated

• Aldehydes (e.g., formaldehyde, 
acetaldehyde)

• Haloketones
• Miscellaneous halogenated 

DBPs
• N-nitrosodimethylmine 

(NDMA, other nitrosamines)
• Chlorate
• Mutagenic activity
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470 P. I. FEDER ET AL.

the unidentified chemical components, as well as for biological
and chemical interactions among them.

For the input water characteristics, the “unit of analysis” is
the water source–treatment plant process combination. For the
output water characteristics, the “unit of analysis” is the indi-
vidual water sample corresponding to a particular treatment
plant and time/place in the system at which the sample was
obtained. At each of the five treatment plants, one finished
water sample and two distribution water samples were analyzed
(i.e., 15 water samples).

CHARACTERIZATION OF SIMILARITY WITH RESPECT 
TO PROCESS INPUT VARIABLES

Nine important source water and treatment plant process
input characteristics are displayed within the first two blocks
of Table 2. These include two dichotomous (i.e., having two
discrete levels) variables and seven measured variables. These
nine input characteristics were selected from the entirety of input
characteristics, based on scientific judgment concerning those
input water and treatment plant characteristics that are thought to
be most highly associated with the toxicity of the finished water.

Statistical inferences to assess “sufficient similarity” among
water sources require:

• A reference set of input water source/treatment plant
process combinations that are considered to be statis-
tically homogeneous.

• Assessment of statistical variation among the water
sources that are assumed to be homogeneous.

• Statistical inferences as to:

• Whether any water samples in the reference set are
outliers with respect to the homogeneous set.

• Whether a new water sample comes from the same
population as the reference set.

• Whether distinct subsets of water samples are
statistically distinguishable.

For the statistical analyses to be meaningful from a toxicologi-
cal perspective, the process input characteristics (i.e., source
water, treatment plant, and disinfection process variables) that are
included in the statistical analyses need to be sufficient to charac-
terize the family of similar mixtures based on the reference data
set and to predict the classes of process output DBP that are
important in characterizing the toxicity of the finished water and
the distribution water. This reference distribution is then used as a
yardstick against which to compare additional processes.

Although most of the input water characteristics shown in
Table 2 are chemical characteristics, the similarity of mixtures
with respect to toxicological effects is of principal interest
from a public health perspective. Thus, similarity of chemical
characteristics among mixtures is of interest primarily to the
extent that the similarity of chemical characteristics implies the
similarity of toxicological characteristics.

An important consideration in interpreting the results of the
analyses discussed in this article is the “universe” of water
sources and treatment processes to which the similarity infer-
ences apply. Two different situations might apply.

• The treatment plants included in the analyses may
constitute the “universe” of treatment plants about
which inferences are to be made based on the data.
For example, this might be the case if the treatment
plants in the data set were the totality of plants utiliz-
ing a single water source (e.g., Lake Ontario) and
inferences were to be restricted to treatment plants
utilizing that water source.

• Alternatively, the treatment plants included in the
analyses may be a random sample drawn from a larger
“population” of treatment plants. Inferences are to be
made about the larger population. In this situation the
reference set of sampled treatment plants must be suffi-
ciently broad that it is representative of the population.

The examples discussed in this article relate to the data
presented in the Schenck et al. (2008). The five treatment
plants in the Schenck et al. (2008) article are not a randomly
representative selected sample from a larger population of
treatment plants. Thus the statistical inferences based on these
data pertain to comparisons among the particular treatment
plants in the data set.

Among the nine input characteristics displayed in the first
and second blocks of Table 2, the type of water (ground or sur-
face) and the form of chlorine (gas or liquid) are each dichoto-
mous (i.e., they have two discrete levels). Let i index the type
of water source (i = 1, 2) and let j index the form of chlorina-
tion (j = 1, 2). The four combinations of i and j define four
“strata,” each representing a distinct joint distribution for the
other p source water input factors and treatment plant input
factors (here, p = 7). For each combination (i, j), a p-dimen-
sional joint distribution exists with mean vector mij and covari-
ance matrix Sij. Let Xij denote the p-dimensional vector of
input characteristics for a sample in stratum (i, j). Assume the
possibly after taking preliminary transformations the random
vector Xij is approximately distributed according to a multivari-
ate normal distribution with mean vector mij and covariance
matrix Sij. That is,

The kth element of the mean vector mij is the mean of the kth
response variable in stratum (i, j). The (h, k)th element of the
covariance matrix Sij is the covariance between the hth and kth
response variables in stratum (i, j). The assumption of multi-
variate normality underlies the statistical tests for equality of
water sources and the outlier detection procedures discussed
later in the article,

X i, jij ij ij~ ( ) ,MVN m ,∑ =1 2
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MULTIVARIATE EVALUATION OF DBP MIXTURE SIMILARITY 471

With sufficient data, the distribution parameters within each
stratum can be estimated based on a linear model:

Here ISi = 1 for surface water and ISi = 0 for groundwater. IFj = 1
for liquid hypochlorite and IFj = 0 for gaseous chlorine. m0 and
S0 represent the (baseline) mean vector and covariance matrix
for groundwater (i = 2) and gaseous chlorine (j = 2); a and A
represent the difference in mean vector, covariance matrix
between the surface water (i = 1) and the baseline groundwater
(i = 2) with gaseous chlorine treatment; b and B represent the
difference in mean vector, covariance matrix between liquid
hypochlorite (j = 1) and the baseline gaseous chlorine (j = 2)
with groundwater source; and g and G represent the difference
in effects between liquid hypochlorite and gaseous chlorine on
the mean vector and covariance matrix, between surface water
and groundwater (i.e., the “interactions” between water source
and treatment plant).

In the most general situation, a separate distribution exists
within each stratum. However, if a, b, g, A, B, and G are all 0,
this reduces to a common distribution among all the strata. If
only g and G are 0, then the interactions are 0 and a “main
effects model” holds. This means that the effect of water
source is the same irrespective of chlorine administration
method and conversely the effect of chlorine administration
method is the same irrespective of water source.

Within stratum (i, j), assume that Nij observations Xij1, . . . ,
XijNij exist. Calculate the sample mean and sample covariance
matrix as

Estimation of separate parameters within each stratum
requires sufficient data for each combination of source water
and chlorine administration. It is required that there be a
minimum of p + 1 (= 8) distinct water samples within each
stratum in order that the sample covariance matrix Sij can be
fully estimated so that there are no linear dependencies among
variables and so that the inverse of Sij can be determined.

In the absence of sufficient data within each stratum to
estimate separate covariances or to verify different covariances
among distributions, the models of underlying distributions may
be simplified by pooling data across strata to estimate common
parameters, if an assumption of common parameters across strata
is reasonable. For example, if the variances and covariances

among variables can be assumed to be equal across strata, then a
pooled sample covariance matrix can be calculated as

It is necessary that the degrees of freedom Σij (Nij – 1) be at
least p (= 7) in order for the sample covariance matrix to be
fully estimable (i.e., is of full rank) so that the inverse S-1 can
be determined.

CHARACTERIZATION OF SIMILARITY WITH RESPECT 
TO PROCESS OUTPUT VARIABLES

The statistical inference questions for studying the similar-
ity of source water and treatment plant input characteristics are
also relevant for studying the similarity of process output char-
acteristics for multiple water samples. In the Schenck et al.
(2009) data set the process outputs are summarized by a vector
of up to 20 chemical characteristics of the finished water and
the distribution water, as shown in the third block of Table 2.
The output data and the questions to be answered are richer and
are more varied than for the process input data.

The physical and chemical characteristics of the process
outputs were determined in the Schenck et al. (2008) data
on the finished water as well as the downstream distribution
samples. A natural inference question is to assess the similarity
between the distribution water and the finished water. Each
treatment plant provides water sample information from matched
finished water samples and downstream distribution samples.
This results in a two-sample matched-pairs analysis situation.

Because of the relatively small number of treatment plants
included in the data, the vector of output characteristics was
reduced to a subset of somewhat lower dimension in the exam-
ples, so that the inference procedures could be illustrated. Thus,
the examples illustrate the types of multivariate comparison
methods that can be carried out, but are not as extensive a
multivariate comparison as one might choose to carry out if a
more extensive set of treatment plants were available.

STATISTICAL METHODS FOR ANALYSES 
AND DISPLAYS

Statistical analysis procedures are discussed next, with
various analysis objectives that are useful in understanding the
structure of the data.

• Similarity of a new water sample compared to a set of
reference samples.

• Two-sample comparison between the set of finished
water samples and the set of distribution water samples
by a two-sample analysis, not accounting for matching
within treatment plants.

• Identification of outlying samples from within a group
of possibly similar mixtures.

m m a b gij Si Fj Si FjI I I I= + + +0

S Sij Si Fj Si FjA I B I I I= + + +0   G

X X

S X X X X
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• Matched pairs comparison between the set of finished
water samples and the set of distribution water samples
by a two-way multivariate analysis of variance, account-
ing for matching within treatment plants.

• Presentation of graphical and inferential results in the
reduced dimensionality space of principal components.

Comparison of a New Treatment Process to a Reference 
Set of Similar Processes

Consider first the simplest situation. Assume that a common
reference set distribution exists across the (water source (i) and
chlorination method (j)) strata, and that it can be modeled as
normally distributed with mean vector m and covariance matrix
Σ, MVN(m,Σ). Assume that N ≡ ΣijNij independent water samples
are selected from this single population of similar processes.
Denote the p-dimensional response vector for the reference
set as Xij. Suppose that an additional treatment plant has a
p-dimensional response vector Y, and it is desired to test the
null hypothesis that the process that generates Y is similar to
the process that generates the Xij. Under the assumption that
the distribution of Y has the same covariance matrix Σ as the
common distribution of the Xij terms, Hotelling’s T2 statistic
(Morrison, 1976, p. 131) can be utilized to compare the distri-
bution of Y with that of the Xs:

where  and S are as defined previously. Under

the null hypothesis of equality of means the distribution of T2 is
proportional to that of a central F distribution with p and ν –(p – 1)
degrees of freedom:

Under an alternative hypothesis that the process Y differs from
that of the Xij’s, then Y ~ MVN(m + δ,S), where d is the incre-
mental change in the mean vector m of water characteristics. In
that case, the Hotelling’s T2 is distributed proportional to a
noncentral F distribution with the noncentrality parameter λ
related to δ, namely,

where

Here λ is referred to as a “noncentrality parameter.” It mea-
sures how far the “true” mean lies from the null hypothesis

space (after normalizing by the variances and covariances
among the variables). This specification of the alternative dis-
tribution permits the construction of contours of δ that corre-
spond to various levels of power (e.g., 90%) to detect
departures from the common distribution among the sample
of treatment processes that are considered to be similar. When
λ is 0, the noncentral F distribution reduces to the central
F distribution.

The toxicological sensitivity of this simplest inference
procedure to discriminate between similar and dissimilar pro-
cesses on a statistical basis depends on whether the response
values for processes that lead to dissimilar mixtures on toxico-
logical grounds are sufficiently far removed from the reference
set distribution so that l is large enough to have the desired
level of power.

This relatively simple procedure is adapted later to identify
individual vectors of water characteristics that may be outliers
from the overall populations.

Two-Sample Analysis (Unmatched)
Consider the simple scenario where the finished water

samples can be regarded as a single sample and the distribution
system water can be regarded as a second sample, with no
pairing between samples. Let Fi, i =1, . . . , NF denote the
finished water samples, and let Dj, j = 1, . . . , ND denote the
distribution water samples. Assume that (possibly after taking
transformations of the data) F has a multivariate normal
distribution with mean and covariance matrix mF and SF, and
that D has a multivariate normal distribution with mean and
covariance matrix mD and SD. Assume that mD, SD, mF, SF are
estimated by  respectively. Note that with a p-

dimensional response, (NF – 1) and (ND – 1) must each be at
least p in order for the estimated covariance matrices SD and SF

to be fully estimable (i.e., of full rank).
The null hypothesis to be tested is

versus the alternative hypothesis

Under the null hypothesis the finished water and distribution
water mean responses are equal for each variable. Under the
alternative hypothesis they differ for at least one variable.

If there are sufficient numbers of finished water samples
and distribution water samples to estimate separate covariance
matrices SF and SD, a preliminary assessment of the equality of
the covariance matrices ΣF and ΣD can be carried out. Morrison
(1976, p. 252ff) presents a test of the equality of the covariance
matrices due to Box (1949), based on the sample covariance

T Y X Y X
N

2 1 11= − + −−( ) [( ) ] ( )′ S
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MULTIVARIATE EVALUATION OF DBP MIXTURE SIMILARITY 473

matrices. The performance of the test is sensitive to the
assumption of multivariate normality. If the Box test rejects
H0: SF = SD, it is necessary to use a heterogeneous variance
T2 statistic to compare mX and mY. Such a statistic is a direct
generalization of the separate variance t statistic for univariate
comparisons.

For purposes of analysis of the Schenck et al. (2009) data
there is not a sufficient number of water sources to estimate the
covariance matrices for the finished water and for the distribu-
tion water separately, or to carry out a preliminary test. The
homogeneity of covariances between the finished water and
the distribution water is assumed and the covariance matrices
are pooled. The pooled sample covariance matrix is

With a p-dimensional response (NF – 1) + (ND – 1) must be at
least p in order for the estimated covariance matrix S to be fully
estimable (of full rank), so that S-1 can be determined.

The mean vectors are compared using the two-sample
Hotelling’s T2 statistic with homogeneous variance. The null
hypothesis H0 is tested with the Hotelling’s T2 statistic (Morrison,
1976, p. 137).

Under H0, the statistic  has a cen-

tral F distribution with p and ν – (p – 1) degrees of freedom.
Under the alternative hypothesis (that mD = mF + d),

, a noncentral F distribution with

p and ν – (p – 1) degrees of freedom, and noncentrality param-
eter λ, where

This relation can be used to develop contours of differences
between μF and μD that can be detected with high power. This
power analysis can be used to determine whether differences
between finished water and distribution water that are consid-
ered to be of toxicological importance can be detected with
high power.

Detection of Outlying Processes—Mahalanobis D2

A procedure similar to that discussed in the section on com-
parison of a new treatment process to a reference set of similar
processes can be adapted to detect outliers among a reference

set of M processes. Denote the reference set as X1, . . . , XM and
let  denote the mean vector and covariance matrix of the X
terms. Let Xm denote the mth water sample, m = 1,. . . , M. For
the mth process let Xm, denote the response and let D2

m denote
the Mahalanobis D2 statistic,

(Morrison, 1976, p. 235). For this analysis, all M = 15 finished
water samples and distribution system water samples were
treated as if they came from a single distribution.

The Mahalanobis D2 is the square of the distance of each
observation to the center of the distribution, accounting for the
variances and the covariances in the data. It is similar to the
Hotelling’s T2 statistic discussed earlier, except that M is taken
to be sufficiently large that the 1/M term in the covariance
expression for the Hotelling’s T2 statistic is considered suffi-
ciently small to omit.

The overall Type 1 error level must be sufficiently conser-
vative to allow for the number of anticipated water samples
that are falsely declared to be potential outliers to be controlled
to within an acceptable level. For example, if M water sample
response vectors are to be screened, then the overall probability
of falsely declaring a process input to be an outlier is to be con-
trolled at an overall level α (e.g., 0.10), and if there are no out-
lying processes, then the significance level for each individual
comparison might be set at α/M.

An observation Xm is classified as a potential outlier (i.e.,
potentially dissimilar) if Dm

2  is statistically significant. (A
“potential outlier” is sometimes referred to in the statistical
literature simply as an “outlier.”)

The ordered Dm
2  terms are plotted in a chi-square probabil-

ity plot. Treating the overall mean vector and covariance
matrix as approximately known, the distances are distributed
approximately as chi square with degrees of freedom equal to
the dimension of the vector, p as M gets large. Under normality
assumptions and in the absence of outliers, the plot should
resemble a straight line with slope 1. Outlying values would lie
above the curve through the majority of the chi square values.
Figure 1 displays the Mahalanobis D2 distances for the
Schenck et al. (2008) data (p = 7). The reference line is the
chi square distribution with p degrees of freedom. The plot
conforms reasonably well to the order statistics from the chi-
square distribution with p = 7 degrees of freedom.

A robust version of the outlier detection procedure involves
removing one observation at a time when calculating the mean
vector and the covariance matrix. This improves the sensitivity
to detect outlying observations since the influence of an outlier
on the robust mean and the robust covariance is removed. For
each observation Xm, let  represent the mean
vector and the covariance matrix, respectively, of the M – 1
observations that remain after omitting Xm. Repeating this for
each Xm, the robust version of the Mahalanobis D2 statistic is
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calculated for m =1, . . . , M, where one observation is removed
for each calculation. Denote the robust version of the already
described distance function D2

m as RD2
(-m):

An observation is classified as a potential outlier (i.e., poten-
tially dissimilar) if RD2

(-m) lies above the curve through
the majority of the values. Figure 2 displays a chi-square
plot of the robust Mahalanobis D2 distances for the Schenck
et al. (2009) data (p = 7). The reference line is the chi-square
distribution with p degrees of freedom. Two distribution
water samples, from sources 1 and 3, appear to be potential
outliers. 

Matched-Pairs Analysis
The matched-pairs analysis formulation incorporates the

natural pairing that occurs when comparing the characteristics
of the finished water with those of the distribution water from
the same treatment plant. It treats the finished water and the
distribution water samples collected from the same treatment
plant as matched pairs. A matched-pairs analysis is a multivari-
ate generalization of the two-way analysis of variance model,
with blocks and treatments. The treatment plants represent the
“blocks,” and the finished water versus distribution water dif-
ferences represents the “treatment effects.” Let Xijk denote the
output characteristics of the water samples. Note that in this
section the indices i and j have different meanings than in pre-
vious sections. Here i = 1, 2 indicate the finished water (i = 1)
or the distribution water (I = 2). The index j corresponds to the
treatment plants (j = 1,. . .,5). The index k corresponds to the
replicate determinations for each water type and treatment
plant combination. In the application to the Schenck et al. (2009)
data there are K1j = 1 replicate of finished water and K2j = 2 repli-
cates of distribution water for each plant j. Assume that (possibly
after taking appropriate transformations) the random vector Xijk is
approximately distributed according to a multivariate normal dis-
tribution with common covariance matrix:

Let K1 ≡ SjK1j, K2 ≡ SjK2j, and N ≡ K1 + K2. K1 is the total
number of finished water samples and K2 is the total number of
distribution water samples. The statistical model assumes con-
stant covariance across the treatment plants and finished water
versus distribution water. A large number of replicate determi-
nations would be necessary within each treatment plant and water
source combination to assess departures from the assumption
of constant covariance.

The mean response vector mij for water type i, plant j, can be
expressed according to the model

The ai terms represent effects due to finished water (i = 1) and
distribution water (i = 2) and the bj terms represent the effects
associated with the water treatment plants (j = 1, . . . , 5). The
parameters are subject to the constraints Σiαi = 0; Σjβj = 0.
These constraints imply that m represents the average response
across water types and treatment plants, μ + ai represents the
average response for water type i averaged across treatment
plants, and m + bj represents the average response for treat-
ment plant j averaged across water types. In this formulation
the treatment plants represent the totality of the treatment
plants about which inferences are to be made based on the
Schenck et al. data. Let r denote the number of independent
parameters of the model (i.e., the “rank”). Thus r =1+ (2 – 1) +
(5 – 1) = 6.

FIG. 1. Chi-Square Plot of Mahalanobis square distance. (Symbols A–E
represent finished water and symbols 1–5 represent distribution water.
Reference line is the chi square distribution cdf with p = 7 degrees of freedom).
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The null hypothesis of equality of finished water and distri-
bution water characteristics is to be tested based on this model:

versus

Morrison (1976, p. 182ff) discusses the analysis of this model
using a randomized blocks analysis of variance approach.
Let  denote the estimate of mij under the model just
described. The error sums of squares and cross products matrix
E is . The estimated error variance

covariance matrix is , where r (6) is the rank of the

model. Let denote the average finished water sample
response (i = 1) or distribution water response (i = 2) across all
the treatment plants and replicate determinations within treat-
ment plants. In the case of balanced sample sizes, the matched
pairs analysis of variance statistic is proportional to

This statistic resembles the Hotelling’s T2 statistic discussed
earlier, except the error covariance matrix is estimated based
on the residuals from the matched-pairs model after adjusting
for differences among the treatment plants. Morrison (1976,
pp. 178, 185) indicates that under H0, the analysis of variance
statistic can be related to a central F distribution with degrees
of freedom p and (N – r) – (p – 1), namely,

Under the alternative hypothesis, the statistic is proportional to
a noncentral F distribution.

Linear Principal Components Analysis
Linear principal components analysis (referred to later

simply as principal components analysis) is a data-analytic
procedure that empirically can be used to represent most of the
variation in a relatively high dimensional response vector, in a
lower dimensional space. Each transformed variable is a linear
combination of the original variables and is uncorrelated with
the others. In this article, principal components analysis was
carried out on the studentized residuals from the randomized
blocks model fit. The results are used to visualize the data in a
small number of dimensions, in a manner that reveals much of
the structure and relationships in the data.

The first principal component direction is that direction,
across all possible directions, that has the largest variance among
the observations. The second principal component direction is
that direction, orthogonal to the first principal component
direction, that has the greatest variation among observations,
across all possible directions orthogonal to the first principal
component direction. This process continues until the remaining
principal components account for the entire p-dimensional space,
with successively less and less variance in each successive
orthogonal direction. The successive orthogonal directions
are referred to as the “principal component” directions. The
sum of the variances across these principal components direc-
tions is equal to the sum of the variances across the originals
variables. Principal components analysis is often a useful
data analytic approach because it is often the case that the
sum of the variances associated with the first few (e.g., two
or three) principal components directions accounts for a
substantial proportion of the total variation among all the
original variables.

The principal components directions with the largest vari-
ances reflect the relationships among the responses such that
the members of the sample have the greatest variation among
them. Representing the data in the low dimensional space
of the principal components with the largest variances will
often reflect major relationships among the original responses.
These directions are good to examine to identify characteris-
tics of the underlying probability distributions and to look for
departures from assumptions of a common distribution among
the water sources. Often the data are examined graphically
in the space of the principal components with the largest vari-
ances to determine whether the data (and associated water
samples) cluster into subsets rather than arise from a single
distribution.

It is often informative to examine the principal component
directions with the smallest variances. These combinations of
the original responses contain the smallest proportions of the
variation in the reference set. Detection of outlying process
vectors or of vectors corresponding to dissimilar mixtures may
be easier in directions in which the reference set is most tightly
bunched. Donnell et al. (1994), Jolliffe (2004, chap. 10), and
references therein discuss applications of the principal compo-
nents with the smallest variances. Jolliffe (2004, p. 235) states,
“By examining the values of the last few PCs [principal
components—PF[ we may be able to detect observations that vio-
late the correlation structure imposed by the bulk of the data,
but that are not necessarily aberrant with respect to individual
variables.”

The method of principal components is mathematically
based on the fact that the sample covariance matrix S of the
original responses X can be factored into GLG’, where the col-
umns of G are orthonormal and L is a diagonal matrix with
diagonal elements /1 ≥ /2 ≥ . . . ≥ /p. The diagonal elements of L
are referred to as the sample “characteristic roots.” The columns
of the orthonormal matrix G are referred to in mathematical
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terms as the sample “characteristic vectors” and in statistical
terms as the “factor loadings” of the original responses on the
principal components.

The principal components are studied as a data-analytic
tool. The data are plotted in the directions associated with the
largest characteristic roots in order to visualize the relation-
ships among the treatment processes in lower dimensional
space, and in the directions associated with the smallest char-
acteristic roots to detect possible outlying responses or
responses from another population.

EXAMPLES: APPLICATION TO SCHENCK ET AL. DATA—
OUTPUT WATER CHARACTERISTICS

The methods discussed earlier are illustrated with data from
the five water treatment plants that were monitored by Schenck
et al. (2009). The output water samples from each treatment
plant consisted of three samples—one finished water sample
and two distribution water samples.

The five treatment plants, the month and the year during which
they were monitored, the water source, and the chlorine treatment
are summarized in Table 1. The water sources and the chlorine
doses varied among the treatment plants. Each of the five treat-
ment plants was monitored once at a single sampling point for raw
input water and finished output water, and at two distribution sys-
tem output water sites. Each plant used a chlorination process.

The 20 characteristics of the output finished water and
distribution system water, listed in block 3 of Table 2, represent
the set of outputs from the treatment plants. Because of the limited
number of treatment plants and sampling times included in the
data set, the following subset of seven output characteristics was
selected to be used in the examples in this section:

• Total organic carbon (TOC) (mg/L).
• Total organic halogens (TOX) (μg/L).
• Mutagenic activity (revertants/L equivalent).
• Total trihalomethanes (TTHM) (μg/L).
• HAA6 (six haloacetic acidsa) (μg/L).
• Percent brominated TTHM.
• Percent brominated HAA6.

Six of the seven output characteristics are chemical characteristics
of the output water. Mutagenic activity is a toxicological charac-
teristic. Schenck et al. (2009) reported that mutagenic activity
is highly correlated with TOC and TOX.

The values of these seven output characteristics for the fin-
ished water samples and for both of the distribution system
water samples from each treatment plant are displayed in Table 3.
No transformations were carried out on the data prior to analysis.
The univariate means and standard errors for the finished water
and for the distribution water are displayed in Table 3 for each

of the seven output characteristics and for each group. Except
for TTHM, the differences in means between the finished
water and the distribution system water samples lie well within
a single standard error of the mean for each characteristic. For
TTHM, the difference in means is 1.4 standard errors apart,
which is not overly large, particularly for the largest difference
among 7 characteristics. The result of the Hotelling’s T2 test
for the two-sample comparison between the finished water (X)
and the distribution system water (Y) is not statistically significant
(p = .52). This statistic is distributed under the null hypothesis
according to an F distribution with p = 7 and (NX – 1) + (NY – 1) –
(p – 1) ≡ (5 – 1) + (10 – 1) – (7 – 1) = 7 degrees of freedom.

Outlier Detection
Figure 1 displays a chi-square probability plot of the

ordered Mahalanobis D2 statistic 
and Figure 2 displays a chi-square probability plot of the
ordered robust version of the Mahalanobis D2 statistic

(Morrison, 1976, p. 235)
for each of the M = 15 sample responses from the overall
mean response. For each m, the mean and covariance 
and  are calculated, omitting the mth observation. These
are outlier detection displays. For this analysis, all 15 finished
water samples and the distribution system water samples were
treated as coming from a single sample. Treating the overall
mean vector and covariance matrix as approximately known, the
distances are distributed approximately as chi square with degrees
of freedom equal to the dimension of the vector, namely, p = 7.
The letter plotting symbols correspond to the finished water sam-
ples from each treatment plant and the number plotting symbols
correspond to the distribution water samples. Under normality
assumptions and in the absence of outliers, the chi-square proba-
bility plot should follow the plotted chi-square cdf, which is a
straight line with slope 1, going through the point (1, 1). Outlying
values would lie above the plot of the remaining points.

In Figure 1 all the points but a groundwater distribution
sample (1) lie close to the straight line corresponding to the
chi-square reference distribution with p = 7 degrees of free-
dom. The groundwater distribution sample (1) has a smaller
distance from the mean than would be predicated for the larg-
est order statistic based on the reference distribution. Figure 1
displays no indications of outliers.

Figure 2 is based on the differences between each sample and
the overall robust means, normalized by the robust covariance. The
RD2

m values are ordered the same as in Figure 1. The points lie
above the line corresponding to the chi-square distribution with p =
7 degrees of freedom. The points most removed from the chi-square
distribution line correspond to finished water and distribution water
samples from treatment plants 1, 3, and 5. In particular, two
distribution system samples are apparent outliers, one from treat-
ment plant 1 (groundwater source) and one from treatment plant 3
(river surface water source), in that they are removed from and well
above the curve corresponding to the remaining 13 samples.

aThe six haloacetic acids denoted as HAA6 are chloroacetic
acid, bromoacetic acid, dichloroacetic acid, trichloroacetic acid,
bromochloroacetic acid, and dibromoacetic acid.

D X X S X Xm m m
2 1= − −−( ) (′ )

RD X X S X Xm m m m m m
2 1= − −− −

−
−( ) ( )( ) ( ) ( )′

X m( )−
S m( )−

−1

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
c
h
n
i
c
a
l
 
I
n
f
o
r
m
a
t
i
o
n
 
C
e
n
t
r
e
]
 
A
t
:
 
2
1
:
1
1
 
6
 
M
a
r
c
h
 
2
0
0
9



477

T
A

B
L

E
 3

 
Se

le
ct

ed
 S

ou
rc

e 
W

at
er

 C
ha

ra
ct

er
is

ti
cs

 a
nd

 D
is

in
fe

ct
io

n-
B

y-
Pr

od
uc

ts
 in

 th
e 

Fi
ni

sh
ed

 W
at

er
 a

nd
 D

is
tr

ib
ut

io
n 

Sy
st

em

T
re

at
m

en
t p

la
nt

S
am

pl
e

T
ot

al
 o

rg
an

ic
 

ha
lo

ge
n 

(μ
g/

L
)

T
ot

al
 o

rg
an

ic
 

ca
rb

on
 

(m
g/

L
)

M
ut

ag
en

ic
 

A
ct

iv
it

y

T
ot

al
 

tr
ih

al
om

et
ha

ne
s 

(μ
g/

L
)

Si
x 

ha
lo

ac
et

ic
 

ac
id

s 
(μ

g/
L

)

%
 o

f 
to

ta
l 

tr
ih

al
om

et
ha

ne
s 

br
om

in
at

ed

%
 o

f 
to

ta
l s

ix
 

ha
lo

ac
et

ic
 a

ci
ds

 
br

om
in

at
ed

1:
 1

99
5

D
is

tr
ib

ut
io

n 
(1

)
28

.8
0

1.
99

68
3.

50
27

.4
0

4.
01

55
.4

7
72

.8
2

D
is

tr
ib

ut
io

n 
(1

)
32

.3
5

1.
97

35
1.

50
39

.0
0

1.
19

64
.2

3
59

.9
2

Fi
ni

sh
ed

 (
A

)
26

.7
5

2.
00

94
1.

25
16

.9
5

2.
58

42
.4

8
67

.8
3

2:
 M

ar
ch

, 1
99

6
D

is
tr

ib
ut

io
n 

(2
)

48
8.

00
5.

18
55

55
.5

0
82

.5
0

10
9.

30
0.

00
0.

02
D

is
tr

ib
ut

io
n 

(2
)

48
8.

00
4.

89
53

79
.5

0
98

.7
0

11
6.

10
0.

00
0.

07
Fi

ni
sh

ed
 (

B
)

44
8.

00
4.

99
56

35
.5

0
65

.6
0

98
.3

0
0.

00
0.

09
3:

 J
un

e,
 1

99
6

D
is

tr
ib

ut
io

n 
(3

)
19

8.
00

1.
80

39
93

.6
7

90
.0

0
66

.0
0

0.
00

0.
08

D
is

tr
ib

ut
io

n 
(3

)
45

7.
00

3.
07

52
54

.3
3

17
8.

20
12

6.
10

0.
00

0.
00

Fi
ni

sh
ed

 (
C

)
23

1.
00

1.
71

37
38

.0
0

64
.2

0
64

.8
0

3.
89

0.
08

4:
 1

99
7

D
is

tr
ib

ut
io

n 
(4

)
27

7.
00

2.
32

36
14

.6
7

99
.2

0
78

.0
0

0.
00

0.
00

D
is

tr
ib

ut
io

n 
(4

)
22

8.
00

2.
29

27
73

.0
0

11
5.

50
35

.0
0

0.
00

0.
00

Fi
ni

sh
ed

 (
D

)
26

5.
50

2.
38

35
63

.8
3

92
.2

5
73

.5
0

0.
00

0.
00

5:
 1

99
8

D
is

tr
ib

ut
io

n 
(5

)
29

4.
30

3.
21

34
53

.0
0

67
.8

0
0.

00
0.

00
0.

00
D

is
tr

ib
ut

io
n 

(5
)

23
8.

60
3.

31
29

77
.3

3
77

.5
0

0.
00

0.
00

0.
00

Fi
ni

sh
ed

 (
E

)
32

2.
80

3.
52

57
31

.0
0

72
.0

0
58

.9
0

2.
78

0.
31

M
ea

n 
(S

ta
nd

ar
d 

E
rr

or
 o

f 
th

e 
M

ea
n)

a

D
is

tr
ib

ut
io

n 
(N

 =
 1

0)
27

3.
01

 
(5

3.
04

)
3.

00
 

(0
.3

8)
34

03
.6

0 
(5

73
.9

6)
87

.5
8 

(1
3.

23
)

53
.5

7 
(1

6.
44

)
11

.9
7 

(8
.0

1)
13

.2
9 

(8
.9

0)
Fi

ni
sh

ed
 

(N
 =

 5
)

25
8.

81
 

(6
8.

76
)

2.
92

 
(0

.6
0)

39
21

.9
2 

(8
73

.3
7)

62
.2

0 
(1

2.
37

)
59

.6
2 

(1
5.

76
)

9.
83

 
(8

.2
0)

13
.6

6 
(1

3.
54

)

a H
ot

el
li

ng
’s

 T
2  te

st
 in

di
ca

te
s 

th
at

 o
ve

ra
ll 

sa
m

pl
e 

ef
fe

ct
 is

 n
ot

 s
ig

ni
fi

ca
nt

ly
 d

if
fe

re
nt

 b
et

w
ee

n 
fi

ni
sh

ed
 w

at
er

 a
nd

 d
is

tr
ib

ut
io

n 
w

at
er

, p
 =

 0
.5

2.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
c
h
n
i
c
a
l
 
I
n
f
o
r
m
a
t
i
o
n
 
C
e
n
t
r
e
]
 
A
t
:
 
2
1
:
1
1
 
6
 
M
a
r
c
h
 
2
0
0
9



478 P. I. FEDER ET AL.

The robust version of the Mahalanobis D2 statistic is more
sensitive in detecting “potential outliers” than is the originally pro-
posed statistic. The question of whether the “potential outliers” are
“true outliers” or are simply the most extreme values from a heavy
tailed distribution needs to be decided by examination of the under-
lying laboratory records by the laboratory analysis staff to deter-
mine whether there were deviations from the study protocol in the
manner in which the data were taken, whether the ambient condi-
tions associated with those samples differed in some fundamental
way with those of the other samples, whether there were clerical
errors, or whether the deviations represent natural variation. Since
the data values in Table 2 vary over multiple orders of magnitude,
consideration could be given to determine whether the use of pre-
liminary transformations, such as log transformations, might bring
these two samples into better agreement with the others.

Although there is no absolute right or wrong decision approach
with how to deal with outlying values, the philosophy is adopted
that unless the outlying values are known to have resulted from
errors, from protocol deviations, or from unique ambient condi-
tions that differ from the remainder of the data, the values are
considered to be valid data, to represent natural variation, and they
are retained in the analyses. There is no external information to
suggest that the extreme samples in Figure 2 are associated with
measurement errors of protocol deviations. The subsequent analy-
ses are carried out including these outlying water samples.

Matched-Pairs Analysis
Analyses were performed that accounted for potential dif-

ferences among treatment plants. A two-way multivariate anal-
ysis of variance model, which included effects of sample type
(finished water or distribution system water) and treatment
plant, was fitted to the data. This is effectively a matched-pairs
analysis with paired responses within each treatment plant. The
two-way multivariate analysis of variance model was fitted to
the data using the GLM procedure in the SAS System (SAS
Institute, Inc., 2004). The test for finished water versus distri-
bution water effect is directly analogous to the Hotelling T2 test
considered previously, except the error sums of squares and
cross-products matrix E is based on the residual vectors from
the two-way randomized blocks model, after accounting for the
effects of both plants and sample type. For purposes of the
matched-pairs analysis, Xijk corresponds to the response vector
from replicate k of sample type i, i = 1, 2, and treatment plant
j, j = 1, . . . , 5.  corresponds to the average response of
finished water samples and  corresponds to the average
response of distribution water samples. The statistic

has an F distribution with degrees of freedom p = 7 and ν – (p – 1)
= (K1 + K2 – 1) – (I – 1) – (J – 1) – (p – 1) ≡ (5 + 10 – 1) – 1 – 4 –

(7 – 1) = 3. K1 and K2 were defined in the Matched-Pairs Analysis
subsection of the Statistical Methods section. Under the null
hypothesis, the test for finished water versus distribution water
effect is distributed as an F distribution with 7 and 3 degrees of
freedom. Under the alternative hypothesis the test statistic has a
noncentral F distribution. The error sum of squares and cross
products matrix E includes the interaction of sample type and
treatment plant pooled with replicate variation. There is no evi-
dence of a statistically significant sample type effect (p = .55).

The test for treatment plant effect is an analysis of variance
test to compare the five treatment plant mean vectors. Under
the null hypothesis, an analysis of variance test (Hotelling–
Lawley trace—an extension of the Hotelling’s T2 test for the
comparison of more than two groups) for treatment plant
effects has a distribution that is approximated by an F distribu-
tion with 28 and 2.57 degrees of freedom. There is strong
evidence of a difference among treatment plants (p = .004).
This difference is in part due to differences between groundwater
and surface water sources, as well as differences among treatment
plants, as seen in Figure 4, to be discussed later. The results of
the analysis of variance tests are displayed in Table 4.

Principal Components of Residuals From 
Matched-Pairs Analysis

A principal components analysis was performed on the stu-
dentized residuals from the two-way multivariate analysis
model that includes effects due to treatment plant and sample
type. Studentized residuals from the multivariate analysis of
variance model were determined by leaving out one observa-
tion at a time, determining the residuals from the two-way
analysis of variance model fitted to the remaining data, and
normalizing the residuals by their standard errors in a component-
wise basis. The studentized residuals reflect the correlation
structure among the responses in the data.

The results are displayed in Table 5. The “loadings” of the
original variables on the first principal component are denoted
as “Char Vect 1.” The loadings result in an essentially
unweighted average of four output DBP constituents and
mutagenic activity. They give very small weight to the percent
bromination responses. Schenck et al. (2008) noted that the
output DBP constituents in the first principal component are

X1..
X2..

u − −
− +

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ −

−
( )

( ) ( )
p

X
1 1 1

1 2

1

p
X X

K K
E X1.. 2.. 1.. 2..′

TABLE 4 
Analysis Results from the Two-Way Multivariate Analysis of 

Variance (MANOVA) on the Selected Source Water 
Characteristics and Disinfection-By-Products in the Finished 

Water and Distribution System

Samples Treatment plants

MANOVA Test 
for no overall 
effects

p-value = 0.55 p-value = 0.0042
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positively correlated with mutagenic activity. The “loadings”
of the original variables on the second principal component
(“Char Vect 2”) are essentially the difference between percent
of TTHM that is brominated and percent of HHA6 that is bro-
minated. The output characteristics that dominate the first prin-
cipal component have little weight in this component.

For each treatment plant and output water sample type the
normalized mean scores (i.e., the normalized mean responses
expressed in the principal components coordinates) were added
back to the studentized residual scores. Figure 3 and Figure 4
display the re-centered studentized residual scores from each
of the treatment plants in the principal components space.
These figures display the relationships among the treatment
plants and the water sample types in a series of statistically

independent transformed variables, reflecting the greatest varia-
tion among the water samples and the least variation. Figure 3
displays the first and second principal components (i.e., those
that explain the greatest portion of the variation), while Figure
4 displays the sixth and seventh principal components (i.e.,
those with respect to which the data have the least variation).
In these figures the letter plotting symbols (A, B, C, D, and E)
correspond to the finished water samples and the number plot-
ting symbols (1, 2, 3, 4, and 5) correspond to the distribution
water samples. Figure 3 clearly shows that the output charac-
teristics associated with samples “A” and “1” (from the treat-
ment plant with a groundwater source) are different from those
of the other samples (from the treatment plants with the surface
water sources) with respect to the first two principal compo-
nents. Table 3 shows that the groundwater finished water and

TABLE 5 
Loadings of the Original Variables on the Principal Components (Characteristic Vectors) and Variances of the Principal 

Components (Characteristic Roots) Based on the Principal Components Analysis of the Studentized Residuals in the Matched 
Pairs Analysis After Adjusting for Water Source and Treatment Plant Effects

Char 
vect 1

Char 
vect 2

Char 
vect 3

Char 
vect 4

Char 
vect 5

Char 
vect 6

Char 
vect 7

Total organic halogen (μg/L) 0.4568 0.0215 −0.1162 0.1966 −0.7042 −0.1155 0.4790
Total organic carbon (mg/L) 0.4543 −0.0357 −0.2383 0.2853 0.1918 −0.6255 −0.4755
Mutagenic activity 0.4335 0.0042 0.4425 −0.4642 0.4031 −0.2574 0.4148
Total trihalomethanes (μg/L) 0.4366 0.0246 −0.3805 0.2801 0.4547 0.5870 0.1853
Six haloacetic acids (μg/L) 0.4524 0.0732 0.3217 −0.2844 −0.3011 0.4213 −0.5809
% of total trihalomethanes 

brominated
−0.0396 0.7413 0.4488 0.4908 0.0770 −0.0116 0.0225

% of six haloacetic acids 
brominated

0.0149 −0.6654 0.5332 0.5140 0.0390 0.0833 0.0115

Char roots and percent of 
total variance explained by 
the principal components

4.53 
(60.7%)

1.59 
(21.3%)

0.75 
(10.0%)

0.37 
(5.0%)

0.11 
(1.5%)

0.07 
(1.0%)

0.045 
(0.6%)

FIG. 3. First principal component vs. second principal component. Matched
pairs analysis, adjusting for variability among treatment plants.
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FIG. 4. Sixth principal component vs. seventh principal component.
Matched pairs analysis, adjusting for variability among treatment plants.
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distribution water samples are highly brominated and have
relatively low TOX, TTHM, and HAA6 concentrations, as well
as relatively low mutagenic activity. The primary role of the
first two principal components is to separate groundwater
source treatment plant samples from the others. In Figure 4,
based on the principal components with the least variation, the
five treatment plants are clearly separated, which is in agree-
ment with the finding of a highly significant treatment plant effect.
Within each plant, the finished water samples and the distribution
system water samples cluster together, which is in agreement with
the finding of a nonsignificant sample type effect.

In summary, the graphical displays of the largest and small-
est principal components of the Schenck et al. (2009) data indi-
cate that the characteristics of the output from the treatment
plant that uses a groundwater source differ considerably from
the outputs from the four treatment plants that use surface
water sources. The characteristics of the finished water and the
distribution water from the same treatment plant are in agree-
ment. This provides a visualization of the results of the statisti-
cal tests that indicated that there is no statistical evidence of
differences in output characteristics between the finished water
and the distribution system water, but there is statistical indica-
tion that the output characteristics differ among the treatment
plants. These differences exist primarily between the ground-
water source plant and the surface water source plants, but also
exist among the four surface water source plants. Figures 3 and
4 raise a conjecture that treatment plants C, D, and possibly E
are more similar to one another than to treatment plants A and B.

DISCUSSION
This article has reviewed and discussed several multivariate

statistical analyses and display techniques useful for assessment
of sufficient similarity of complex environmental mixtures.
These methods were applied to (1) the comparison of inputs to
and output water from treatment plants, or from different stages
within the same treatment plant, (2) the determination of whether
there is statistical evidence of heterogeneity, and if so, (3) the
nature of the heterogeneity. These procedures illustrate several
approaches for displaying and analyzing high-dimensional data
that naturally arise in the comparisons of alternative water
sources, the disinfection treatment processes that are applied to
them, and the characteristics of the DBP in the output for the
treatment plants. The methods discussed are based on the physi-
cal, chemical, and toxicological characteristics of the water
sources. Feder et al. (2009) discuss the use of robust, nonpara-
metric bootstrap methods to test the homogeneity of treatment
plant water characteristics, as an alternative to the parametric
normal theory analysis of variance procedures discussed in this
article.

The analyses discussed in this article pertain to the statisti-
cal significance of differences among water samples. Statisti-
cally significant differences between water samples are those
that are too large to have occurred just due to chance. This

differs from the notion of toxicological significance, which
generally means that the observed differences between water
samples are sufficient to exert important health implications,
but also, in some studies, a rare effect may be present in only
one or a few test subjects but still be considered toxicologically
significant. In most cases, however, a study is said to be “ade-
quately powered” if differences that are sufficient to be toxico-
logically significant are also large enough to be statistically
significant. This implies that differences sufficient to have
health implications are likely to be detectable from the data.

The sensitivity of statistical analyses is impacted in this arti-
cle by a number of considerations:

1. The selection of process input and output variables, so
that the statistical analyses are sensitive to toxicologically
significant effects.

2. The incorporation of valid estimates of variability within the
data to construct valid and efficient statistical estimates and
tests. True replicate determinations need to be built into the
routine monitoring procedures to provide a basis for deter-
mining the variability in the responses. True replication
needs to reflect all important sources of variation, in con-
trast to multiple measurements on the same samples, which
may reflect only the analytical portion of the variation.

3. The deletion of water samples corresponding to potentially
outlying responses should be confirmed on chemical and
toxicological grounds, if possible.

4. The Schenck et al. (2009) data set is useful for illustrating
several of the suggested analysis procedures. However, the
data represent a relatively small set of treatment plants, not
necessarily similar, each monitored at a single time point,
and without true replicate measurements on which to base
variability estimates.

5. Principal components analysis was demonstrated to be a
useful data-analytic tool to help visualize and understand
relationships portrayed in the data.

6. The inference procedures discussed in this article are based
on process input and output chemical compositional charac-
teristics and a calculated toxicological characteristic,
mutagenic activity. Chemical compositional characteristics
of the water samples are useful insofar as they are associ-
ated with toxicological characteristics.

7. As an extension of the methods discussed in this article, the
analyses discussed could be performed as weighted analy-
ses, with weights proportional to the relative toxicities of
each mixture component. Such weights might be cancer
potency factors, benchmark doses for noncancer endpoints,
or relative concentrations compared to a no-effect or low-
effect level. A logical consequence of incorporating toxico-
logically based weights into the analysis is that the weights,
and therefore the analysis results, will be dependent on the
particular health outcome being considered. Thus, mixtures
may be “similar” with respect to certain health outcomes but
not others.
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Other statistical methods have been proposed based on
components of the whole mixture as well as the whole mixture.
Gennings et al. (1997) and Teuschler at al. (2000) consider
statistical design and analysis methods for detecting departures
from additive component effects in the toxicity of mixtures.
This has important implications concerning the extent to which
the toxicity of complex mixtures can be studied based on tests
with individual mixture components or with defined mixtures
involving combinations of components. Stork et al. (2008)
present statistical methods for addressing sufficient similarity
in dose-response for various mixtures of 11 chemicals containing
the same components but with varying ratios.
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